971 research outputs found

    Investigation of the Stock Structure of Atlantic Walrus (Odobenus rosmarus rosmarus) in Canada and Greenland Using Dental Pb Isotopes Derived from Local Geochemical Environments

    Get PDF
    The chemical composition of animal tissues such as teeth appears to reflect an individual's exposure to its geochemical environment. In this study, the lead (Pb) isotope composition of dental cementum was used to investigate the stock structure of Atlantic walrus (Odobenus rosmarus rosmarus) in the Canadian Arctic and Greenland. The 12 communities providing walrus samples for this study represent most of the Canadian and Greenlandic villages where walrus still form an important part of the traditional Inuit diet. Significant differences between locations in mean Pb isotope ratios and the limited overlap of the ranges of values indicate that each village harvested walrus herds that exploited substantially different geological/geographical habitats. This geographic segregation based on isotopic signatures suggests that most walrus stocks (i.e., the groups of walrus that interact with hunters at each community) are more localized in their range than previously thought. 208Pb/207Pb and 208Pb/204Pb were the most important stock discriminators, reflecting the influence of local geological Th/U composition (i.e., 208Pb) on Pb isotope composition in walrus teeth. 204Pb-based isotope ratios in walrus were consistently higher (more radiogenic) and more homogeneous than those in regional terrestrial bedrock, a difference probably due to selective leaching of radiogenic Pb from mineral phases into seawater and mixing during weathering and transport. Dental Pb isotope signatures may have widespread application to stock discrimination of other coastal marine mammal species.La composition chimique de tissus animaux tels que les dents semble refléter l'exposition d'un individu à son milieu géochimique. Pour la présente étude, on a utilisé la composition isotopique du plomb (Pb) contenu dans le cément pour examiner la structure du stock du morse de l'Atlantique (Odobenus rosmarus rosmarus) dans l'Arctique canadien et le Groenland. Les 12 communautés qui ont fourni les échantillons de morse pour ce projet représentent la majorité des villages canadiens et groenlandais où le morse constitue toujours une grande partie du régime alimentaire traditionnel des Inuits. Des différences marquées entre les sites dans la moyenne des rapports isotopiques du Pb et le faible recoupement des gammes de valeurs révèlent que chaque village prélevait des morses au sein de troupeaux qui exploitaient des habitats géologiques/géographiques bien distincts. Cette ségrégation géographique fondée sur des signatures isotopiques suggère que la plupart des stocks de morses (c.-à-d. le groupe de morses qui interagit avec les chasseurs dans chaque communauté) sont plus localisés dans leur territoire qu'on ne le pensait auparavant. 208Pb/207Pb et 208Pb/204Pb étaient les grands caractères discriminants des stocks, reflétant l'influence de la composition géologique locale Th/U (c-à-d. 208Pb) sur la composition isotopique du Pb dans les dents du morse. Les rapports isotopiques fondés sur 204Pb étaient constamment plus élevés (plus radiogéniques) et plus homogènes que ceux du substratum terrestre, la différence étant probablement due à la lixiviation sélective du Pb radiogénique passant des phases minérales dans l'eau de mer et à son mélange durant la météorisation et le transport. Les signatures isotopiques du plomb dentaire peuvent avoir de vastes applications dans la discrimination des stocks d'autres espèces de mammifères marins côtiers

    On the effects of using the Grassmann-Taksar-Heyman method in iterative aggregation-disaggregation

    Get PDF
    Iterative aggregation-disaggregation (IAD) is an effective method for solving finite nearly completely decomposable (NCD) Markov chains. Small perturbations in the transition probabilities of these chains may lead to considerable changes in the stationary probabilities; NCD Markov chains are known to be ill-conditioned. During an IAD step, this undesirable condition is inherited by the coupling matrix and one confronts the problem of finding the stationary probabilities of a stochastic matrix whose diagonal elements are close to 1. In this paper, the effects of using the Grassmann-Taksar-Heyman (GTH) method to solve the coupling matrix formed in the aggregation step are investigated. Then the idea is extended in such a way that the same direct method can be incorporated into the disaggregation step. Finally, the effects of using the GTH method in the IAD algorithm on various examples are demonstrated, and the conditions under which it should be employed are explained

    Quasi lumpability, lower-bounding coupling matrices, and nearly completely decomposable Markov chains

    Get PDF
    In this paper, it is shown that nearly completely decomposable (NCD) Markov chains are quasi-lumpable. The state space partition is the natural one, and the technique may be used to compute lower and upper bounds on the stationary probability of each NCD block. In doing so, a lower-bounding nonnegative coupling matrix is employed. The nature of the stationary probability bounds is closely related to the structure of this lower-bounding matrix. Irreducible lower-bounding matrices give tighter bounds compared with bounds obtained using reducible lower-bounding matrices. It is also noticed that the quasi-lumped chain of an NCD Markov chain is an ill-conditioned matrix and the bounds obtained generally will not be tight. However, under some circumstances, it is possible to compute the stationary probabilities of some NCD blocks exactly

    Comparison of partitioning techniques for two-level iterative solvers on large, sparse Markov chains

    Get PDF
    Experimental results for large, sparse Markov chains, especially the ill-conditioned nearly completely decomposable (NCD) ones, are few. We believe there is need for further research in this area, specifically to aid in the understanding of the effects of the degree of coupling of NCD Markov chains and their nonzero structure on the convergence characteristics and space requirements of iterative solvers. The work of several researchers has raised the following questions that led to research in a related direction: How must one go about partitioning the global coefficient matrix into blocks when the system is NCD and a two-level iterative solver (such as block SOR) is to be employed? Are block partitionings dictated by the NCD form of the stochastic one-step transition probability matrix necessarily superior to others? Is it worth investigating alternative partitionings? Better yet, for a fixed labeling and partitioning of the states, how does the performance of block SOR (or even that of point SOR) compare to the performance of the iterative aggregation-disaggregation (IAD) algorithm? Finally, is there any merit in using two-level iterative solvers when preconditioned Krylov subspace methods are available? We seek answers to these questions on a test suite of 13 Markov chains arising in 7 applications

    Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality

    No full text
    We present the design and fabrication of a dual air-bridge waveguide structure integrated with MEMS functionality. The structure is designed to function as a tunable optical buffer for telecommunication application. The optical buffer structure is based on two parallel waveguides made of high refractive index material with subwavelength dimensions. They are suspended in air, and are separated by a sub-micron air gap. Due to the fact that the size of the waveguides is much smaller than the wavelength of light that propagates in the structure, a significant fraction of the optical mode is in the air gap between the waveguides. By changing the size of the air gap using MEMS techniques, we can vary this fraction and hence the effective refractive index of the waveguide structure, thus generating tunable optical delay.The optical buffer structure was grown on an InP substrate by molecular beam epitaxy, and the device layer was made of InGaP. An InGaAs layer was sandwiched between the device layer and the substrate to serve as a sacrificial layer. The sub-micron waveguides, their supports in the form of side pillars with tapered shapes in order to minimize optical losses, and the MEMS structures were patterned using electron beam lithography and plasma etching. Electrodes were integrated into the structure to provide electrostatic actuation. After the sample patterning, the waveguide structure was released using HF etch. Our simulations predict that by varying the waveguide separation from 50 nm to 500 nm, we could achieve a change in propagation delay by a factor of two

    Soft functions for generic jet algorithms and observables at hadron colliders

    Get PDF
    We introduce a method to compute one-loop soft functions for exclusive N - jet processes at hadron colliders, allowing for different definitions of the algorithm that determines the jet regions and of the measurements in those regions. In particular, we generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates the dependence on the jet boundary from the observables measured inside the jet and beam regions. Results are given for several factorizable jet definitions, including anti-k T , XCone, and other geometric partitionings. We calculate explicitly the soft functions for angularity measurements, including jet mass and jet broadening, in pp → L + 1 jet and explore the differences for various jet vetoes and algorithms. This includes a consistent treatment of rapidity divergences when applicable. We also compute analytic results for these soft functions in an expansion for a small jet radius R. We find that the small-R results, including corrections up to O(R2), accurately capture the full behavior over a large range of R
    corecore